Classification of motor imaginary in EEG using random

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

A Latent Discriminative Model-Based Approach for Classification of Imaginary Motor Task from EEG Data

We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be ...

متن کامل

A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.

We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be ...

متن کامل

EEG Classification of Different Imaginary Movements within the Same Limb

The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increa...

متن کامل

Modeling Differences in the Time-Frequency Representation of EEG Signals Through HMM’s for Classification of Imaginary Motor Tasks

Brain Computer interfaces are systems that allow the control of external devices using the information extracted from the brain signals. Such systems find applications in rehabilitation, as an alternative communication channel and in multimedia applications for entertainment and gaming. In this work, a new approach based on the Time-Frequency (TF) distribution of the signal power, obtained by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Global Journal of Computer Sciences: Theory and Research

سال: 2017

ISSN: 2301-2587

DOI: 10.18844/gjcs.v7i3.2792